Cooperative Scene-Event Modelling for Acoustic
Scene Classification

Yuanbo Hou, Bo Kang, Andrew Mitchell, Wenwu Wang, Jian Kang, Dick Botteldooren

Abstract—Acoustic scene classification (ASC) can be helpful
for creating context awareness for intelligent robots. Humans
naturally use the relations between acoustic scenes (AS) and
audio events (AE) to understand and recognize their surrounding
environments. However, in most previous works, ASC and audio
event classification (AEC) are treated as independent tasks, with
a focus primarily on audio features shared between scenes and
events, but not their implicit relations. To address this limitation,
we propose a cooperative scene-event modelling (cSEM) frame-
work to automatically model the intricate scene-event relation by
an adaptive coupling matrix to improve ASC. Compared with
other scene-event modelling frameworks, the proposed ¢SEM
offers the following advantages. First, it reduces the confusion
between similar scenes by aligning the information of coarse-
grained AS and fine-grained AE in the latent space, and reducing
the redundant information between the AS and AE embeddings.
Second, it exploits the relation information between AS and
AE to improve ASC, which is shown to be beneficial, even if
the information of AE is derived from unverified pseudo-labels.
Third, it uses a regression-based loss function for cooperative
modelling of scene-event relations, which is shown to be more ef-
fective than classification-based loss functions. Instantiated from
four models based on either Transformer or convolutional neural
networks, cSEM is evaluated on real-life and synthetic datasets.
Experiments show that cSEM-based models work well in real-
life scene-event analysis, offering competitive results on ASC
as compared with other multi-feature or multi-model ensemble
methods. The ASC accuracy achieved on the TUT2018, TAU2019,
and JSSED datasets is 81.0%, 88.9% and 97.2%, respectively.

Index Terms—Acoustic scene classification, Audio event clas-
sification, Scene-event relation, Cooperative modelling.

I. INTRODUCTION

Acoustic scene classification (ASC) aims to tag an audio
recording with predefined semantic labels that depict the
environment in which the audio was recorded. Audio event
classification (AEC) performs multi-label classification on an
audio clip and aims to identify target events in the audio clip.
ASC and AEC-related systems are used in various applica-
tions, such as medical surveillance [1] and video analysis [2].
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In previous studies, such as [3], ASC and AEC are often
treated as separate tasks, with models built independently for
each task. However, acoustic scenes (AS) and audio events
(AE) in natural environments usually accompany each other,
and they are often implicitly associated. Certain AE may occur
in a specific acoustic scene, while different AS may contain
their representative events. For example, in the acoustic scene
park, AE of bird flight and dog barking are likely to occur.
Such fine-grained events form the basis of polyphonic AS.
Humans use these fine-grained events and the overall acoustic
background to understand and recognise their surrounding
environment [4]. Motivated by the above observation, a few
studies have proposed to analyse AS and AE jointly. For
example, in [5], a simple but intuitive approach is introduced to
perform ASC and AEC simultaneously by training a shared
feature encoder and performing classification on latent em-
beddings. In addition, a synthesised dataset [5] is created
to evaluate such studies by mixing foreground events with
background scenes. Another line of studies adopts a different
framework, which relies on shared low-level but separated
high-level embedding spaces. Specifically, in [6], scene-event
representations are learned with three shared convolutional
layers based on multi-task learning (MTL), while high-level
representations are learned without scene-event interaction.
Using the MTL paradigm, a scene conditional-loss model
[7] is used to learn the scene-to-event relation. Given that
P(AE|AS) denotes the probability that AE occurs in AS,
P(AE|AS) represents the scene-to-event relation that can be
used to infer AE from AS, but this relation is one-way, which
means that P(AS|AFE) cannot be inferred from P(AE|AS).
In relation-guided ASC (RGASC) [8], P(AE|AS) is exploited
on a fixed prior matrix. Unlike the MTL approach of sharing
fixed layers, the cross-stitch method [9] connects fully con-
nected and pooling layers of dual-task network branches, by
learning improved representations of both tasks, through mod-
elling shared representations with their linear combinations.

The above scene-event joint learning methods can be sim-
plified to two frameworks: modelling based on the same one
embedding space (MoE) [5], and modelling based on shared
low-level and separated high-level embedding spaces (MIhE)
[6][10][7]. MoE, also named hard parameter sharing [11],
tries to obtain the same representations applicable to both AS
and AE. However, AS and AE naturally follow a hierarchical
relationship. As AEs are building blocks of AS, the coarse-
grained scene and fine-grained event information have their
own intrinsic properties. Therefore, MoE has limitations in
capturing the intricate and changeable relation between AS
and AE in real life. Unlike MoE, the MIhE framework, which



is similar to soft parameter sharing [11], exploits the shared
scene-event and separated task-dependent representations for
ASC and AEC, respectively. The joint learning in MIhE re-
duces the chances of overfitting, thereby resulting in improved
performance for audio-related analysis tasks [12]. However,
the MIhE framework does not fully utilize the inherent and
implicit relation between AS and AE. Although the model [7]
based on MIhE uses the fixed scene-to-event binary relation
(i.e. presence or absence), such relation is derived from the
synthetic dataset [5], and thus can be difficult to match with
the complex scene-event relation in real life.

Real-world scene-event relations are not simply binary for
presence or absence, but rather a likelihood expressed by
probability. Humans can infer the ongoing AE from AS, and
infer AS from AE. For example, there is a high probability of
birds singing in the park scene, and the sound of whizzing cars
often occurs in the street scene. That is, relations between AS
and AE are typically two-way, instead of the fixed one-way
scene-to-event relations in the conditional-loss model [7] and
RGASC [8]. To exploit the two-way scene-event relation for
ASC, this paper proposes a cooperative scene-event modelling
(cSEM) framework, where an adaptive coupling matrix is
introduced for modelling the implicit scene-event two-way
relations, i.e. P(AE|AS) and P(AS|AFE). The coupling ma-
trix thus acts as a two-way bridge for the mutual interaction
and transformation between the high-level representations of
AS and AE, reducing the overlap between semantic spaces
of AS and AE, thus classifying AS and AE collaboratively.
Different from RGASC [8], which uses a dataset-specific fixed
prior matrix to crudely map the final predictions of ASC and
AEC branches, the cSEM aims to automatically align the core
knowledge extracted from AS and AE through a two-way
scene-event relationship model in an end-to-end manner.

The main contributions of this work are summarized as
follows: 1) We propose a novel framework cSEM for mod-
elling the two-way scene-event relation and use it to improve
the ASC performance. We instantiate the cSEM framework
with Transformer-based and CNN-based models. 2) We con-
duct various experiments with detailed analysis, and further
compare the cSEM-based models with the state-of-the-art
models to illustrate the benefit of the cSEM framework. 3)
To improve the understanding of the cSEM framework, we
use visualization to provide insights into the capability of the
¢SEM framework in aligning the knowledge of AS and AE,
and reducing redundant information between the AS and AE
embeddings. Furthermore, we analyze the differences between
real-life scenes from the perspective of events using the cSEM-
based model for scene-event joint analysis.

This paper is organized as follows. Section II introduces
scene-event joint modelling frameworks in prior studies and
proposes the cSEM framework. Section III presents models
based on the proposed cSEM framework. Section IV describes
datasets and experimental setup. Section V analyses the re-
sults. Section VI draws conclusions.

II. SCENE-EVENT JOINT MODELLING FRAMEWORKS

In this section, we discuss two existing frameworks, namely
MoE and MIhE, as introduced in Section I, and compare

their similarities and differences. We then propose the cSEM
framework, which has an advantage in exploiting the relation
between scenes and events.

A. MoE: modelling using the same one embedding space

As shown in Fig. 1 (a), in MoE, the input time-frequency
representations X (¢; f) are mapped by the encoder layers
and transformed to the joint modelling space of AS and
AE. The encoder layers can be formed as several types
of neural networks, such as deep neural networks (DNN),
convolutional neural networks (CNN), and recurrent neural
networks (RNN) [13]. Let X € RT*¥ denote the time-
frequency representations, where 7' and F' denote the number
of time frames and frequency bins. The encoder f turns X
into an internal representation with dimension d;, namely
f(X) = R,., where R,.' € R% is the joint representation
of AS and AE. Then, the scene classification layer maps R,
onto the target scene components through an adaptive weight
matrix W, and outputs the prediction of scenes s € R™s,

Js = [s(Ree W) = fu(%) (1)
where W, € R™*% n, is the number of scene classes, fs is
the activation function, and Z, is the logit [14] of y,. Relying
on the predicted s and the ground-truth label of scene ys,
the ASC loss can be defined as Lgcone = 10885(¥s, ys). ASC
is usually viewed as a single-label multi-class classification
problem, hence the potential option of f, is Softmax and losss
is cross entropy (CE) loss [15].

The event prediction . € R™ is obtained by projecting
the internal representation onto the event classification layer
through an adaptive weight matrix W, € R™*%  namely:

ge = fe(RseWZ> = fe(ée) 2
where n. is the number of event classes, f. is the activation
function, and Z. is the logit of ¢j.. The AEC loss can be derived
from the distance between the predicted y. and the label of
the event ye, i.e. Lovent = 1088e(Ye, ye). AEC performs multi-
label classification on audio clips, so the potential option for
fe is Sigmoid and the corresponding loss function loss, is
binary cross entropy (BCE) [16]. Then, the final loss of MoE
is L = ALgcene + AoLievent, Where \; (2 = 1,2) adjust the
weights between the loss components, and \; default to 1.

An advantage of MOoE is its simplicity and efficiency of
learning joint representations R, that are applicable to both
AS and AE. This allows a robust and general feature ex-
tractor to be obtained, which can easily transfer the learned
knowledge to related pattern recognition tasks [16]. However,
in practice, AS and AE are represented in different levels
of information in an audio clip. The AS and AE, which
are from the clip level and frame level, respectively, are
not only correlated, but also different in their characteristics.
The models in [17][18][19] focus on the fine-grained AE
information, and thus can not fully capture the coarse-grained
AS information. Vice versa, the models in [20][21] focus on
global AS features, and are limited in capturing the subtle
differences between similar events. In short, MoE is limited
in dealing with intricate real-world situations in the presence
of varied acoustic scenes and diverse audio events.

'To simplify expressions, the batch size in the symbolic representation of
the sample is omitted, i.e. R%1 is R1* 91 in the training.
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Fig. 1. The three frameworks for scene-event joint modelling: (a) MoE: modelling using the same one embedding space; (b) MIhE: modelling using shared
low-level and separated high-level embedding spaces; (c) cSEM: the proposed cooperative scene-event modelling with adaptive coupling matrix.

B. MIhE: modelling using shared low-level and separated
high-level embedding spaces

As shown in Fig. 1 (b), in MIhE, separate encoding layers are
further used to extract task-dependent acoustic representations
of AS and AE. As found in [22], the low-level basic acoustic
features are transferable to some extent and hence applicable
in ASC and AEC tasks. However, high-level abstract represen-
tations are often difficult to be adapted to different scenarios.
With the subsequent embedding layer, which usually consists
of fully connected layers, the audio representations can be
mapped to the high-level embeddings in the semantic space to
be suitable for the corresponding classification tasks.

Following notations of MoE, the shared encoder turns the
input X into joint scene-event representations R.. Next, the
separated encoder further extracts the AS representations R
and the AE representations R., respectively. The subsequent
embedding layers transform R and R. into the embeddings
of scenes E, € R% and the embeddings of events E, € R,
Then, similar to the operations in MoE, the scene classification
layer of MIhE maps E ¢ onto target scene components by W
and outputs the prediction of scenes g5 € R™s,

gs = fs(Eng> = fs(és) 3)
where W, € R®*ds_d_ is the dimension of scene embed-
ding space, and Z; is the corresponding logit. Similarly, the
prediction ¢, of the event branch is obtained by

Je = f(BW() = felZe) )
where W, € R"*de (. is the dimension of the event
embedding space, . € R"™, and 2. is the logit. Finally,
the losses of MIhE are the distance between the predicted
value and the corresponding label, i.e. Lscene = losss(¥s, Us)
and Leyent = 108Se(Ye, ye). The final loss of MIhE is L =
A1Lscene + A2Levent, Where \; (i = 1,2) is set typically to 1.

MIhE learns high-level task-goal-oriented representations
based on low-level scene-event representations. Compared
with MoE, MIhE has the advantage of utilizing richer informa-
tion of shared and individual representations of coarse-grained
AS and fine-grained AE. However, as MIhE does not explicitly
coordinate the interaction between representations of AS and
AE, the discriminative ambiguity remains for some similar
audio clips. Intuitively, real-life audio clips may contain AS
with overall similar sound, but they can be distinguished using
implicit AE information specific to a scene class. For example,

when the scene branch is uncertain about the scene label
of an audio clip being clamorous streets or noisy parks, if
the event branch indicates that the clip contains the audio
event features of birds singing and dogs barking, then the
scene branch can be more confident about the audio clip
being from a park scene. Likewise, some audio clips may
have similar sound events. In this case, the scene information
implied in the contextual background can be used to clarify
ambiguities caused by similar sound events. For example,
when the event branch is uncertain about a clip whether it
contains cat meowing or baby crying, but if the scene branch
indicates that the audio clip is more likely to occur in a nursery
room, then the clue from the scene branch can help the event
branch to reduce its confidence on the prediction of the less
likely event cat meowing. In short, MIhE neglects the implicit
and intricate relation between scenes and events.

C. ¢SEM: proposed cooperative scene-event modelling

Different from MoE and MIhE, we present a novel cSEM
framework, as shown in Fig. 1 (c).

In ¢SEM, a coupling matrix W, is constructed to capture
the bidirectional relation between AS and AE based on the
core knowledge of AS and AE learned by the model, i.e. the
weight matrices from the classification layers W and W .
This coupling matrix is used to map AS embeddings E; to
the event space to infer the corresponding event g.. Then, the
loss between the inferred event y. and the actual output of the
AEC branch is calculated, which is back propagated to update
the relevant weights used in the coupling matrix. Similarly, AE
embeddings E. are first mapped into the scene space to infer
the corresponding scene output 3, and then the loss between
the inferred scene ¢, and the actual output of the ASC branch
is measured to correct the learnable weights. In this process,
W e will model the implicit two-way scene-event relation,
with which the ASC and AEC branches will collaborate to
estimate each other’s output and classify their targets.

Algorithm 1 shows the pseudo-code of cSEM. To model the
bidirectional scene-event relations, inspired by self-attention
[23], the dimensions of embedding spaces in Fig. 1 are set
equal, i.e. d. = ds and W, € R™= %", The role of coupling
matrix W g, is to serve as a two-way scene-event bridge for the
coordination and collaboration of the AS knowledge W, and
the AE knowledge W . learned by the model, and to further



reduce the extent of overlap between the ASC and the AEC
branches in latent semantic space, resulting in a reduction
of redundancy in the core information of AS and the core
information of AE. The reduction of redundant information
facilitates both branches to learn their target representations as
much as possible while modelling their cooperative relations.

Algorithm 1 PyTorch pseudo-code of the cSEM framwork

1: for X in Dataloader: # X input acoustic feature
2: Rse = f(X) # f: shared_encoder_layers
3 Es = ASC_Embedding(ASC_encoder(Rse))

4 E. = AEC_Embedding(AEC_encoder(Rs¢))

5 s = fs(BsWT # W : scene_classification_layer.weight
6: Ye = fe(EeW§) # W .: event_classification_layer.weight
7.

8

9

Lscene = losss (1;57 ys)y Levent = losse (@67 ye)

Wge=Wg WZ # W s¢: adaptive scene-event coupling matrix
# A.: attention factor of audio events

# K oo4: event-to-scene transformation matrix
# ys: inferred scene by event

# loss_function(input, target)

: Ac=Softmax(W s.)
10: Keos =AW,

11:  §s=E. KT,
12: Ls_by_e = 1OSSs_by_e (g57 Z)s)
13:  A=Softmax(WZI,)
14: KsQe = As WS

150 §e=EsKL,
16: Le_by_s = losse_py_s(Fe, Je)

17: L = A1Lscene + A2Levent + >\3Ls_by_e + )\4Le_by_s

# Ag: attention factor of acoustic scenes
# K s2¢: scene-to-event transformation matrix
# ys: inferred event by scene
# loss_function(input, target)

# final loss

Lines 9 to 12 in Algorithm 1. To explore the possibility
of inferring AS using AE embeddings, the weights in W,
which indicate the distribution of all AEs in each scene, are
first calculated by row-wise Softmax [23] to obtain the atten-
tion factor of events A, € R™=*"< that assigns a weight to
each event in the corresponding scene. Using A., the learned
event knowledge W, is transformed into the scene space
to obtain the event-to-scene knowledge transformation matrix
K. o, € RsXde, Finally, based on K.os, the corresponding
inferred scene by event, y; € R™s, can be derived from
AE embeddings E. via the adaptive W .. The loss Lg y ¢
between the inferred scene ¢ and the actual output s of ASC
branch can be fed back to the AEC branch to update relevant
weights, which further improves the quality of W, and better
captures the implicit and intricate scene-event relation.

Lines 13 to 16 in Algorithm I. The process of inferring
AE from AS embeddings E is similar to inferring scenes
from events described above. First, the attention factor of
scenes A; € R"™*" js computed where the weights are
assigned to each scene for a given event. Then, the learned
scene knowledge W, is transformed into the event space
by multiplying A resulting in the scene-to-event knowledge
transformation matrix K zo, € R ¥, Finally, using K o,
the corresponding inferred event by scene, y. € R™¢, can be
derived from E,. The loss Lc_py,_s between the inferred event
Y. and the actual output ¢, of the AEC branch is fed back to
the ASC branch to update the relevant weights. The coupling
matrix-related code, shown from 8 to 16 lines in Algorithm 1,
is the only extra part of cSEM, compared to MIhE.

In the ¢SEM framework, the loss functions losss_py o and
losse_py_s model the scene-event relation and similarity be-
tween the derived results and the actual outputs. That is, they
aim to match another branch’s output. Hence, mean squared
error (MSE), which performs well in regression tasks [24],
is chosen for these loss functions. If the inferred scene by

event, ys, is regarded as the predicted scene vector in the
semantic space. The output of the ASC branch, s, is viewed
as the actual scene vector in the semantic space. The goal
of MSE is to measure the absolute distance between the two
vectors in the latent space, while the classification loss, like
CE, is used to measure the difference between classification
results of each class in the two vectors. Meanwhile, to improve
the classification accuracy, CE tends to expand the distance
between the target output and other non-target outputs, that is,
to enlarge the distance between different classes [25]. Thus, the
regression loss such as MSE is apt to consider the whole output
derived from embeddings as the target to optimize, while the
classification loss such as CE optimizes the class-wise loss
to improve the classification accuracy and enlarge the gap
between the target class and the non-target class. Comparison
of the model performance achieved using several options for
losss_1y_e and losse_py_s can be found in Section V-D.

Combining the loss of the ASC, the AEC, the inferred scene
by event, and the inferred event by scene, the loss of the cSEM
read as L = >\1Lscene + >\2Levent + >\3Ls_by_e + /\4Le_by_57
where \; (¢+ = 1,2,3,4) is the scale factor of each loss,
set empirically to 1. Compared with MIhE, cSEM has an
advantage in that it learns the coupling matrix W, which
has the potential to capture the implicit relation between the
real-life varied scenes and diverse events. With the two-way
collaborative scene-event interaction, the cSEM framework
can further facilitate the downstream classification tasks.

III. INSTANTIATIONS OF THE PROPOSED CSEM

In ASC and AEC tasks, the most commonly used network
before is CNN [26], but now Transformer [23] is gradually
taking over. This section will show four instantiations of cSEM
based on Transformer and CNN models.

A. ¢SEM-AST: cSEM-based Audio Spectrogram Transformer

Audio Spectrogram Transformer (AST) [27] has recently
achieved competitive results on audio classification tasks on
AudioSet [28]. To alleviate the tendency of overfitting in
Transformer models [29], the AST with 10 encoder layers is
used in this paper, instead of the default 12 encoder layers. Fig.
2 (a) illustrates the proposed cSEM-based AST (cSEM-AST).

1) Shared parts: First, the audio waveform is converted into
a spectrogram. The spectrogram is then split into a sequence
of patches, and each patch is flattened to an embedding using a
linear projection layer. The patch sequence does not keep the
temporal order, and Transformer does not capture the input
order information. Thus, a trainable positional embedding is
added to each patch embedding to allow the model to preserve
the temporal order of patches. The total number of encoder
layers used here in AST is 10. Assuming that n shared encoder
layers are in Fig. 2 (a), the remaining m = 10 —n layers will
learn the individual task-dependent representations separately.

2) Separated parts: To extract the individual high-level
task-dependent representations for ASC and AEC, the scene-
event representations are fed into the encoder layers of the
ASC and AEC branches, respectively. The learned repre-
sentations are then fed into the embedding layer to learn
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Fig. 2. Models based on the proposed cSEM framework.

improved mappings in the latent semantic space that will be
later used for classification. The weights W, and W, which
contain highly condensed information about similarities and
differences between different targets, will be used to infer each
other’s outputs under the guidance of the scene-event relation
module, and to refine their respective estimations.

3) Modelling of scene-event relation: The relation module
aims to align AS embeddings E, with AE embeddings E.,
and then map the core knowledge W, and W, about targets
learned by the classification layers from different semantic
spaces into the scene-event joint space W ., which is ded-
icated to modelling the implicit relation between AS and AE
without any prior knowledge. The process for learning the
coupling matrix in cSEM is driven by the losses between the
derived results g, and g5 and the actual predictions g, and ys.
The joint modelling of the scene-event relation enables explicit
interaction between high-level representations from ASC and
AEC branches. With such joint modelling, the latent semantic
spaces of AS and AE will be gradually aligned.

B. ¢SEM-PANN: c¢SEM-based Pretrained Audio Neural Networks

To show the flexibility of the cSEM framework, we also pro-
pose cSEM based on the Pretrained Audio Neural Networks
(PANN) [16], as shown in Fig. 2 (b). The differences between
cSEM-PANN and cSEM-AST are that: (1) the spectrogram
will be fed directly into cSEM-PANN, instead of slicing the
spectrogram into patches as in ¢cSEM-AST. The inputs of
PANN are clip-level features, not patch-level. Thus, cSEM-
PANN does not require the projection layer, the position
embedding layer and the additional token as in AST; (2)
Both the shared and branched layers in cSEM-PANN consist
of typical convolutional blocks, which are based on stacked
convolutional layers; (3) The total number of convolutional
blocks in PANN is 6 [16], assuming that there are n shared
blocks in Fig. 2 (b), the remaining m = 6 —n blocks will learn
separate representations. Except for the input, the composition,
and the number of layers, the remaining components of cSEM-
PANN are the same as those of cSEM-AST.

C. ¢SEM-CNNT: cSEM-based CNN-Transformer

Transformer-based AST and convolution-based PANN have
achieved excellent audio classification performance, so this

(b) cSEM-PANN
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paper tries to combine convolution and Transformer to exploit
CNN’s local feature extraction capabilities and Transformer’s
long-term context capture capabilities. To this end, a simple
CNN-Transformer (CNNT) is proposed and instantiated based
on the cSEM, as shown in Fig. 2 (c). Specifically, CNNT
contains 3 convolutional blocks from PANN, a Transformer
encoder layer from AST, an embedding layer and a classifica-
tion layer. The features captured from the Transformer encoder
layer are passed to the embedding layer. The default output
size of the Transformer encoder layer is 512, so the number of
units in the embedding layer in CNNT is also 512 by default.

D. ¢SEM-TinyCNN: ¢SEM-based TinyCNN

To further evaluate the cSEM, we propose TinyCNN with only
2 convolutional layers and 2 multi-layer perceptrons (MLP),
and instantiate it based on cSEM. The convolutional layers
in TinyCNN contain 32 and 64 filters with a kernel (7 x 7),
respectively. The first MLP acts as an embedding layer with
only 100 units, and the second MLP acts as a classification
layer. The lightweight cSEM-TinyCNN explores the benefits
of cSEM on ASC tasks for small models. The cSEM-TinyCNN
has a similar but simpler structure to the cSEM-CNNT. Due
to space constraints, cCSEM-TinyCNN is not shown in Fig. 2.

IV. DATASETS AND EXPERIMENTAL SETUP

This paper uses two real-life datasets and one synthetic dataset.
(1) Real-life datasets. The TUT Urban Acoustic Scenes 2018
(TUT2018) dataset [15] contains 8640 10-second segments, in
total, 24 hours of audio of 10-class scenes. The TAU Urban
Acoustic Scenes 2019 (TAU2019) dataset [30] contains 14400
10-second audio segments, totalling 40 hours of audio of
10-class scenes. There are no event labels in scene datasets
TUT2018 and TAU2019. Thus, pretrained models (AST and
PANN) are used to tag each audio clip with pseudo labels to
indicate the probabilities of the corresponding AE.

(2) Synthetic dataset. The joint sound scene and event
dataset (JSSED) [5] has 3000 30-second segments. The JSSED
consists of synthesized audio clips with 32-class AE and 10-
class AS, where the events present in an audio clip are related
to the scene of the clip. For each of the 10-class AS, there
are 10 unique locations for each class, with a total of 100
background recordings. The AE to background AS signal-to-
noise ratio is randomly assigned in the range -15 to 15 dB [5].



Pretraining. Most systems used as references in later ex-
periments are from DCASE2018/2019 challenges [15] which
allow the use of AudioSet and other audio scene datasets. AST
and PANN perform excellently after they are trained on Au-
dioSet [28]. Previous work shows that a large and deep model
like AST performs poorly when trained on small datasets alone
[31]. Therefore, this paper uses pretrained weights of PANN.
As the AST used here has only 10 layers, the first 10-layer
weights of the pretrained AST are used. For the proposed
CNNT, its convolution part refers to the corresponding part
of PANN. Hence, the first 3 convolutional blocks of CNNT
are initialized with the weights of the corresponding convolu-
tional blocks from the pretrained PANN, while the remaining
encoder layer, embedding layer, and classification layer are
randomly initialized without pretraining. The TinyCNN is
pretrained for 10 epochs in the balanced subset of 22K audio
clips of AudioSet. A batch size of 64, and an Adam [32]
optimizer with a learning rate of 0.001 are used. To further
explore the performance of the four models with (w/) and
without (w/o) cSEM, Section V-B presents comprehensive
results for each model w/ and w/o pretraining and w/ and
w/o the proposed cSEM framework.

Experimental setup. The log Mel filterbank (fbank) is used
as the acoustic feature [16]. The inputs to cSEM-AST differ
slightly from those to cSEM-(PANN, CNNT, TinyCNN). For
cSEM-AST, the audio clip is converted into a sequence of
128-dimensional fbank computed with the 25ms Hamming
window and a hop size of 10ms, then the spectrogram is
split into a sequence of patches following the settings of
[27]. For ¢SEM-(PANN, CNNT, TinyCNN), the number of
mel filter banks is 64 [16]. Then the 64-dimensional fbank
is extracted by STFT with Hamming window length of 46ms
and overlap of 1/3 between windows following the settings
of [33]. The cSEM-based models are trained for a maximum
of 100 epochs. Gradient accumulation with a batch size of
64, and an Adam optimizer [32] with initial learning rates of
le-6 [27] and 1e-3 [33] are used to minimize losses in cSEM-
AST and cSEM-(PANN, CNNT, TinyCNN), respectively. To
prevent over-fitting, dropout [34], and normalization are used.
Systems are trained on GPU cards Tesla V100 without a fixed
seed. To facilitate the comparison of results with other sys-
tems, the training/testing split of the TUT2018 and TAU2019
datasets follow the default split of the DCASE2018 Task1A?
and DCASE2019 Task1A3. In training, 20% of the training
samples are randomly selected to form the validation set. For
JSSED, as in [7], 2400 30-second audio clips are used for
training, 300 for validation and 300 for testing. There is no
overlap between the training, validation, and testing sets. Each
system is run 10 times. The accuracy (Acc.) [33] is used as
the metric. A larger Acc. indicates a better performance.

V. RESULTS AND ANALYSIS

Although the synthetic JSSED has ground-truth labels of AS
and AE, the diversity of AE, the complexity of AS, and the
intrinsic logical relationships between AE and AS are inferior

Zhttp://dcase.community/challenge2018/task-acoustic-scene-classification
3https://dcase.community/challenge2019/task-acoustic-scene-classification

to those of the real-life TUT2018 and TAU2019. Hence, most
of the experiments will be performed on real-life datasets. This
section analyzes the performance of cSEM by following the
research questions (RQs). RQ1-4 explore the performance of
the proposed cSEM-based models from different perspectives,
and compare the differences between the cSEM framework
and other scene-event joint modelling frameworks. RQS5-6
provide intuitive insights into ¢cSEM’s capability in aligning
the core knowledge of AS and AE, and applying the cSEM-
based model to real-life scene-event analysis. RQ7 compares
the cSEM with other scene-event joint analysis methods.

A. RQI: Does more information shared in the proposed cSEM
Jramework lead to better model performance?

The first step is to explore the ratio between the number
of shared and separated layers of branches in the cSEM
framework to determine the model structure for experiments.
That is, how much of the separated task-oriented individual
representations of AS and AE in different latent semantic
spaces should be retained? The impact of the number of shared
layers/blocks on cSEM-AST/PANN is explored in Table I.

TABLE I
ASC ACCURACY (%) OF MODELS WITH DIFFERENT NUMBERS (n) OF
SHARED LAYERS/BLOCKS ON THE TUT2018 VALIDATION SET.

n | cSEM-PANN  c¢SEM-AST n | cSEM-PANN  c¢cSEM-AST
17803 £1.85 8146092 | 6 |75.64 &+ 1.89 82.12 £ 1.77
2 |78.67 £ 131 8191 144 | 7 None 81.86 + 1.18
317813 £1.78 8233 £ 139 | 8 None 81.59 £+ 1.93
4 17764 =195 8249 £ 152 | 9 None 81.43 £+ 1.48
5 17635+ 0.93 8230 £ 145 | 10 None 81.03 £+ 1.28

As shown in Table I, the number of shared layers/blocks
does not have a monotonous effect on the results of either
cSEM-AST or ¢SEM-PANN. At first, the classification ac-
curacy of models increases with the number of shared lay-
ers/blocks, but after reaching the peak, it starts to decrease with
the increase in the number of shared layers/blocks. cSEM-AST
achieves the best result when the first 4 layers are shared,
while ¢SEM-PANN obtains the best result when the first 2
blocks are shared. In Table I, especially for cSEM-AST, the
difference in the number of shared layers leads to a slight
difference in the results. The reason may be that the multi-
head attention and feed-forward layers in Transformer encoder
[23] in the AST both contain residual connections. During
the forward propagation of the network, the residual structure
can enable the input signal to be propagated directly from
any lower layer to the upper layer to prevent the problem of
network degradation [35]. With residual connections, cSEM-
AST becomes insensitive to the effect of the changing number
of shared layers. In contrast, PANN does not have the residual
structure. As a result, changes in the number of shared blocks
have a larger impact on cSEM-PANN. The first 4 and 2 shared
layers/blocks are used as the default configuration structures
for cSEM-AST and cSEM-PANN, respectively. The results
from ¢cSEM-CNNT and ¢cSEM-TinyCNN have similar trends
to those from cSEM-PANN, and are not listed in detail due
to space constraints. The best-shared layers for cSEM-CNNT
and cSEM-TinyCNN are the first 2 and 1 layers. Subsequent
experiments will be conducted on these structures.



B. RQ2: Does pretraining improve the performance of mod-
els? How do the scene-event joint frameworks MoE, MIhE,
and the proposed cSEM perform on the same base model?

As shown in Table II, without pretraining, CNN-based
PANN, CNNT, and TinyCNN outperform the Transformer-
based AST for ASC on the real-life dataset. This is consistent
with the results reported in a previous paper [31], which
shows that Transformer-based models perform poorly on small
datasets. Transformer-based models usually have more layers,
which tend to overfit severely on small datasets [29] due
to the large number of parameters involved in the model.
After the AST is pretrained with the large-scale AudioSet,
its performance is significantly improved. Among the 3 CNN-
based models in Table II, TinyCNN has the smallest number
of layers and the simplest structure, resulting in the worst
scene classification performance. The convolutional blocks of
CNNT are the same as those of PANN. However, CNNT
with one Transformer encoder is slightly better than PANN
results w/ or w/o pretraining, which implies that adding a
Transformer encoder with attention to a pure convolutional
model is beneficial in capturing the global context for ASC.

TABLE II
AccC. (%) FOR ABLATION STUDY OF THE EFFECT OF CSEM
FRAMEWORK AND PRETRAIN ON ASC ON TUT2018 TEST SET.

# | Pretrain cSEM AST PANN CNNT TinyCNN
1] X X 160294055 69.85+0.71 70.88+0.92 67.2040.43
2 X V' |61.7240.82 72.2140.60 73.3440.79 68.92-£0.67
3| v X |76.9840.95 74.3540.74 75.74+1.09 71.3241.43
4| v V' 79.1240.89 76.41+0.83 76.76+0.94 73.4141.17

The results of w/ and w/o cSEM framework in Table II show
that cSEM, which aims to fuse fine-grained event with coarse-
grained scene information, can help improve the accuracy of
the corresponding model in ASC. The ASC results in Table
IT demonstrate the effectiveness of the cSEM framework in
improving ASC performance via the analysis of scenes from

the perspective of scene-event cooperative modelling.

TABLE III
AcCC. (%) oF ASC AND AUC OF AEC RESULTS OF THREE FRAMEWORKS
BASED ON THE SAME BACKBONE MODEL AST ON TEST SET.

Dataset Task MoE MIhE Proposed cSEM
TUT2018 ASC (%) | 7143 & 1.44 | 77.57+ 091 79.12 £+ 0.89
AEC |0.977 £ 0.012 | 0.985 £ 0.007 | 0.986 + 0.005
JSSED ASC (%) | 93.11+ 0.87 | 94.14+ 0.93 94.97 + 0.96
AEC |0.989 + 0.008 | 0.991 £ 0.008 | 0.990 + 0.007

different. Compared to MoE, the underlying assumption of
MIhE tends to resemble the actual real-world situation more
closely, thereby leading to better results in Table III.

The assumption of cSEM is that joint representations can
be shared, and individual task-oriented representations can
be associated to jointly model the implicit relation between
AS and AE by the shared coupling matrix. The ASC and
AEC branches in ¢SEM learn the similarities and differences
between them by modelling the two-way scene-event relation.
Hence, cSEM has a better capability of distinguishing similar
scenes. Even though some results in Table III are close, the
statistics of results of 10 runs of MIhE and ¢SEM in Table
IIT on TUT2018 reveal that the cSEM provides a statistically
significant improvement in ASC accuracy compared to MIhE.

The AEC results are also listed in Table III. To measure
the performance of models for discriminating between events,
the threshold-free AUC [36] is used. It can be observed that
almost all models achieved excellent performance on the AEC
of the used datasets, and the difference in the AEC results by
various frameworks is relatively small. This is also consistent
with the results in DCASE challenges [3], where most deep
learning-based models achieved good AEC results.

TABLE IV
AccC. (%) OF ASC RESULTS OF DIFFERENT FRAMEWORKS BASED
ON THE SAME BACKBONE MODEL AST ON JSSED TEST SET.
# | AEC labels used in training MoE MIhE cSEM
1 GT labels with 80% Acc. [90.834+1.71 91.174+1.55 92.47+1.46
2 | Pseudo labels with 80% Acc. |88.474+1.58 90.62+1.44 91.354+1.84

Table III uses pseudo labels of AE on TUT2018 and ground-
truth (GT) labels of AE on JSSED. To examine whether
pseudo labels similar to target augmentation offer additional
benefits compared to real labels, Table IV uses GT labels
from JSSED and pseudo labels from a pretrained model (both
labels with 80% AEC accuracy on JSSED) to replace the
AE labels of the training set in JSSED in Table III. AST-
based frameworks are retrained to evaluate the impact of using
pseudo and GT labels of AE on the ASC task. Table IV
shows that the models using GT labels outperform models
with pseudo labels, no matter what the framework is. That
means, GT labels are more powerful for ASC than pseudo
labels from the pretrained models.

TABLE V
PARAM. AND ENERGY-COSTLY MACS OF PRIMARY MODELS.

Inspired by the good performance of AST in Table II, AST
is used as the base model to evaluate the performance of
scene-event joint analysis frameworks. Table III shows the
ASC and AEC results of the frameworks. The performance
of MoE is inferior to the performance of MIhE, where low-
level basic joint representations and high-level task-dependent
individual representations are learned to improve adaptability
and reduce potential overfitting of the model [12]. From
another perspective, the underlying assumption of MoE is
that the latent target semantic spaces of AS and AE are
entirely consistent. The underlying assumption of MIhE is
that, given the natural connections between AS and AE, the
latent semantic spaces of AS and AE partially overlap, while
the specific characteristics of these two targets should be

Task Only ASC Joint ASC and AEC

Model | AST PANN|MoE-AST MIhE-AST cSEM-AST cSEM-PANN
Param.(M)| 73.61 79.69 | 74.69 118.79 118.79 160.19
MACs.(G)|108.999 6.439 | 109.001  174.258 174.292 11.009

Table V presents the number of parameters (in Millions)
and the multiply-accumulate operations (MACs in Gigas).
Compared with MIhE, ¢SEM, which models two-way scene-
event relations by the coupling matrix, does not introduce new
parameters. Thus, the number of parameters of MIhE-AST
and cSEM-AST are equal. Under the same task and backbone
model, cSEM-AST only increases MACs by 0.034 G over
MIhE-AST. Table VI presents MIhE-plus, which adds another
embedding layer on the ASC and AEC branches of M1hE,
to explore whether deepening the M1hE can improve its per-
formance. The MIhE-plus-PANN results show that the newly
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Fig. 3. Visualization of the learned representations using t-SNE [37]. Subplots (a), (b), and (c) are the output of the scene classification layer in MoE-AST,

MIhE-AST, and ¢SEM-AST on TUT2018 test set, respectively. Subplots (d), (e),

added parameters in MIhE-plus increase the computational
overhead of the model, but do not improve its performance.

TABLE VI
ASC AcC. OF DIFFERENT FRAMEWORKS ON TUT2018 TEST SET.
Model w/ pretraining [MIhE-PANN ~ MIhE-plus-PANN  c¢cSEM-PANN
Param. (M) 160.19 168.58 160.19
MACs. (G) 10.976 10.984 11.009
Acc. (%) 75.00£1.35 74.68+1.42 76.411+0.83

A visualization of the learned AS representations is shown
in Fig. 3. In Fig. 3 (a), it can be seen that samples from
street pedestrian (pedes.) are easily confused with those from
shopping mall (mall) and public square (squa.). Samples from
tram are mixed with samples from bus and metro. In Fig. 3
(b), samples of tram are easily compounded with samples of
metro. Even for the human auditory system, it is challenging to
distinguish these similar scenes by relying on audio only. The
10 classes of scenes are more clearly visible in Fig. 3 (c). The
scenes, which can be easily confused in Fig. 3 (a) and (b), are
distinguishable in Fig. 3 (c). In particular, bus can be clearly
distinguished from tram and metro. The obscure samples of
airport (airp.) shown in (a) and (b) are clustered into a distinct
subclass in (c). The confusion matrices illustrate a similar but
more pronounced boosting effect by the proposed cSEM.

C. RQ3: What effect do different values of \ have on the
performance of cSEM-based models?

The loss weight A\ represents the importance of its target
in the overall model’s performance. The proposed cSEM
contains two types of losses: classification losses (Lgscenes

and (f) are the corresponding confusion matrix of (a), (b), and (c), respectively.

Levent) and regression losses (Ls_py e, Le by s). If the weights
of classification losses are increased, the model will pay more
attention to exploring ASC and AEC separately. If the weights
of regression losses are increased, the model will be driven
towards improved modelling of the scene-event relation in the
joint space and the alignment of the AS embedding space with
the AE embedding space.

Table VII first investigates the impact of losses on ASC
(#1-#9), then the optimal ratio of fusing different losses (#10-
#14). The Ay, A2, A3, and A4 correspond to Lgcenes Levents
Ls_by_e» and Le_py s, respectively. The AS information alone
is exploited in #1, which can be regarded as a pure ASC
model based on AST without the aid of additional information.
#2 is effectively trained only for the AEC branch in ¢SEM-
AST, so the output of its untrained ASC branch is random,
resulting in poor performance. #3, #4 and #5 use Lg 1y e,
Le by s, and both of them as supervised loss for the dual-
branch model in training. The labels in Lg 1,y o and Le py
come from the output of ASC and AEC branches, respectively,
that is, their labels are pseudo labels from the model’s own
outputs instead of real labels. Therefore, the cases #3, #4 and
#5 correspond to self-supervised learning. In #6, there are
ASC and AEC branches, but no learning about the scene-event
relation. #7 and #8 introduce Ly 1,y ¢ and Lg 1,y ¢ respectively,
where L. py s facilitates the training of ASC branch, while
Ls_pby_e is beneficial to AEC branch. The loss combination
of #7 focuses on capturing global AS information, while #8
focuses more on AE representations. The performance of #7 is
slightly better than that of #8, indicating that the information
related to AS is more beneficial to ASC. #9 is a default



coefficient combination, and is also used in RQ1 and RQ2.
The results (#1-#9) indicate that in this task, the information
represented by Lgcene 18 crucial for cSEM-AST. The learning
based on Lg py ¢, Levent, and Le py s can complement the
learning based on Lgcene to further improve the accuracy of
scene classification. Next, #10-#14 focus on exploring how to
more effectively fuse these losses and maximize the benefits
of using the information from events with noisy pseudo labels.
It can be seen that giving a maximum weight to Lgcene and a
second-large weight to Leyent, While incorporating the scene-
event relation information (Lgs_py o and Le_py s) with smaller
weights, leads to the best result as shown in #13. The ASC
accuracy of #13 on the TUT2018 test set is 80.95% +0.97%.
Compared to AST in #3 of Table II, the best ASC accuracy
of cSEM-AST on the test set is increased by 3.97%.

TABLE VII
THE EFFECT OF DIFFERENT VALUES OF A IN CSEM-AST ON ACOUSTIC
SCENE CLASSIFICATION ON THE VALIDATION SET OF TUT2018.

# )\1 )\2 A3 )\4 Acc. (%) # )\1 )\2 A3 )\4 Acc. (%)

1|1 0 0 O] 7883£133 8|1 1 1 0 | 80.41+£1.64
210 1 0 0] 1597170 |91 1 1 1 | 82.49+£1.52
310 0 1 O] 11.77£1.84 |10 1 1 05 1 | 81.95£1.74
40 0 O 1| 11.824203 11| 1 I 1 0.5 81.57£1.58
510 0 1 1] 13.01£2.69 |12 1 1 0.010.01| 83.62+2.05
6|1 1 0 O] 80.06£1.89 [13] 1 0.5 0.010.01| 83.81£1.89
711 1 0 1] 80.73£1.47 |14] 1 0.1 0.1 0.1 83.11+£1.82

The results of cSEM-PANN in Table VIII show a simi-
lar trend to Table VII. #1-#9 in Table VIII show that the
more the model pays attention to AS-related information, the
better its performance. The best coefficient combination for
cSEM-PANN is #14, and the corresponding accuracy on the
TUT2018 test set is 78.50%40.76%, giving a 4.15% increase,
as compared to PANN in #3 of Table II. Overall, cSEM-
AST outperforms cSEM-PANN in the same framework, which
implies that Transformer-based AST is more powerful than
CNN-based PANN for audio classification-related tasks when
large-scale data are used for training the models.

TABLE VIII
THE EFFECT OF DIFFERENT VALUES OF A IN CSEM-PANN ON ACOUSTIC
SCENE CLASSIFICATION ON THE VALIDATION SET OF TUT2018.

# A1 Ao A3 A\g| Acc. (%) #1XA1 A2 A3 A4 Acc. (%)

11 0 O O] 76.81£1.09 |8| 1 1 1 0 | 77.71£1.14
210 1 0 O] 18194142 (9|1 1 1 1 | 78.67+1.31
310 0 1 O] 11.68£2.19 |10/ 1 1 05 1 | 78.23+1.34
410 0 O 1| 12054325 11| 1 1 1 05| 77.46%1.61
500 0 1 1] 1346+£3.17 |12] 1 1 0.1 0.1]79.23+1.95
61 1 0 0] 77.12£1.36 |13] 1 1 0.010.01| 79.36%1.78
711 1 0 1] 77.90£092 |14] 1 0.5 0.010.01| 79.80+1.64

With the results in Table VII and Table VIII, we can
draw the following observations: 1) The cSEM-based joint
classification model outperforms the pure scene classification
model for the ASC task. That is, AE information is helpful for
improving AS classification. 2) Modelling the two-way scene-
event relation and aligning the AS and AE embedding spaces
benefit the scene-event classification. 3) The cSEM framework
effectively models and exploits the scene-event relation for
ASC, even using the information of events with unverified
pseudo labels. 4) The weights of classification losses (Lscene,
Levent) and regression losses (Ls_py_e» Le_by_s) in ¢SEM can
be further adjusted to achieve improved accuracy of ASC.

D. RQ4: How do different loss functions perform on losses
related to the cooperative modelling of scene-event relation?

In the ¢SEM framework, the lossg in Lgcone defaults to the
CE loss, the losse in Leyen: defaults to the BCE loss. The
regression loss MSE [24] is adopted in ¢cSEM to minimize
the two-way relation-related losses, which is expected to fit
the outputs of both branches further to align the knowledge
of AS and AE. As described in Section II-C, the regression
loss is utilized for the cooperative modelling of scene-event
relations as it helps enhance the encoding of the whole output
of embeddings, to improve the training of the coupling matrix.
Based on such theoretical reasoning, MSE loss is used in
preceding RQs. To confirm this reasoning, we also evaluate the
performance achieved by other loss functions. Table IX shows
the performance of using different loss functions for modelling
the scene-event relation under the model structure with optimal
weights of losses. Following the notations of Section II, Z, and
Ze denote the logit [14] of gy, and g., respectively.

TABLE IX
AcC. (%) OF ASC WITH DIFFERENT LOSS FUNCTIONS IN MODELLING
SCENE-EVENT RELATION ON TUT2018 VALIDATION SET. S AND Sig
DENOTE THE SOFTMAX AND SIGMOID FUNCTIONS, RESPECTIVELY.

# Ls by_e Le_ by s cSEM-AST | cSEM-PANN
1 | CE(S(ys), Max(§s)) | BCESig(§e), Ge) |76.35+£1.95] 72.33£1.83
2 | soft CE(S(is), §s) | BCE(Sig(Je), Ge) |77.3442.09| 73.38+1.39
3 MSE(gs, 2s) MSE(Je, 2¢)  |82.064£2.32| 76.97+1.41
4 MSE(s, Us) MSE(§e, Je)  |82.15+2.48| 77.48+1.72
5 | MSE(s, log §s) MSE(§e, Je)  |83.81+1.89| 79.80+1.64

In Table IX, #1 and #2 employ CE and BEC, respectively,
to measure the distance between the predictions derived from
the implicit scene-event relation and the actual outputs of the
corresponding branch. Since AE in AEC tasks is typically
considered independent of each other, BCE is applied for
Le by_s- The input and target in BCE generally default to a
probability distribution, so the input of BCE uses Sigmoid as
an activation function. Regarding CE related to the inferred
scene, two types of CE are available: CE and soft CE [38],
respectively. The targets of CE in classification usually consist
of hard labels of 0 and 1, hence the probability distribution ¥
is mapped to the one-hot vector by M az function to supervise
the training process. For soft CE, the value of probability
ys 1s used as the soft target to preserve rich inter-class
relation information. When using high-entropy soft targets,
each training sample can be provided with more information
than using hard targets, and the gradient between training
samples has smaller variances [39]. Compared with CE, soft
CE in #2 allows the non-target classes to be more prominent
in training, leading to more reliable training and better results.

In Table IX, #3, #4 and #5 employ MSE to estimate inferred
predictions. #3 directly calculates the distance between the
logit vectors before activation functions. A previous study [40]
about the gradient of CE shows that when the logit values
are relatively small, the optimization effect of CE and MSE is
equivalent. A comparison [24] of entropy-based loss and MSE
reveals that MSE has better calibration abilities to correct the
errors. It can be seen that #4 outperforms #3, probably because
the activation functions such as Softmax and Sigmoid restrict
the values of §s and g, to [0, 1], thus prune the target space to
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Fig. 4. Visualization of the core AS knowledge W s and the core AE knowledge W, learned by the proposed cSEM-AST using t-SNE [37].

a smaller range. This leads to the comparison of the original
logits Z; and Z. as targets with g, and y. which are more
likely to guide the model to find the optimal local solution
in the target space. A drawback of Softmax in g, is that
by normalizing an exponential function, the largest value is
highlighted, and the other values are suppressed significantly
[41], resulting in larger gaps between similar values. Using
log Softmax can alleviate this issue, and bring additional
advantages [42], such as numerical stability and gradient
additivity in training. After log mapping, the gy as targets can
result in an effect of model regularization, similar to label-
smoothing regularization [43]. Log Softmax helps prevent the
maximum value from becoming significantly larger than the
remaining values. Log Softmax is used in #5 to make the target
smoother and increase the entropy it implies, which achieves
better results than #4. It may be because some scenes are
similar, such as buses and trams during rush hours, clamorous
streets and noisy parks. There are both similarities and subtle
differences between these scenes. Using log Softmax, the
difference between AS is less likely over-magnified, and thus
reflects better the relation between similar scenes.

E. RQ5: Does the cooperative modelling of the implicit scene-
event relations align the knowledge of AS and AE? Does it help
reduce the overlap between their semantic spaces?

To provide intuitive insight into the implicit and intricate
relation between AS knowledge W, and AE knowledge W,
Fig. 4 shows the distribution of W3 belonging to the scene
space and W, belonging to the event space in the same latent
space. In Fig. 4, AS and the unique AE contained in them are

clustered together, for example, the park scene, and the events
in this scene, such as goose, crow, and bird song. Events such
as music and buzz often occur in the shopping mall. The tram
is accompanied by events such as scratch, conversation, and
alarm. On the contrary, AEs are not unique to one AS, such as
Baby cry is more in between AS, indicating a lesser alignment
between core knowledge in that area. The distribution in Fig. 4
reveals that (public square, street pedestrian) and (metro, tram)
are closer AS pairs in the latent space, and these AS pairs are
indeed similar in real life. Various events in Fig. 4 are clustered
around the corresponding scenes orderly, demonstrating that
the cSEM can align the semantic spaces of AS and AE by the
two-way scene-event bridge via the coupling matrix.

TABLE X
AVERAGE RESULTS OF PCC AND MI BETWEEN Es AND E. ON TUT2018.
Dataset Metric MOoE-AST MIhE-AST | cSEM-AST
Training set PCC 1.000 0.006 0.001
MI (nat) 4.784 3.290 2.958
Testing set pCcC 1.000 0.002 0.001
MI (nat) 4.827 3.423 2.983

Table X shows the correlation and overlap of AS and AE
embeddings of audio samples in different frameworks, using
Pearson Correlation Coefficient (PCC) [44] and e-based Mu-
tual Information (MI) with the unit of nat [45]. Since the AS
and AE embeddings used in MoE-AST are the same, its PCC
equals 1, and MI is the largest in Table X. Compared to MIhE-
AST, the PCC between AS and AE embeddings in cSEM-AST
is reduced, and the MI is less. The reduction in PCC and MI
between the learned AS and AE embeddings clarifies that the
similarity between AS and AE representations learned by the
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Fig. 5. Differences between acoustic scenes on the development set of TUT2018, where subplots (a) and (b) take the audio event Speech and Vehicle as

examples, while subplot (c) shows the overall differences between scenes.

cSEM-AST is less, while the redundant information between
AS and AE embeddings is reduced. The logical alignment
of the core knowledge of AS and AE shown in Fig. 4 and
the reduction of the redundant information of ASC and AEC
branches in cSEM-AST allow the model to represent AS and
AE for the classification tasks collaboratively.

FE. RQ6: What are the differences among the ten classes of
scenes? Which events contribute most to these differences?

This part analyses the distribution differences of AEs across
scenes, and the overall differences between scenes when all
AEs are considered together. AE classes are identified by 527
pseudo labels from AudioSet, that are used in training.

To analyse differences between AS in terms of individual
AE, first, we obtain the probabilities of 527 classes of AE in
all audio clips from the AEC branch of cSEM-AST. Then, the
probabilities of 527 types of AE in audio clips classified in
each scene class are summed and averaged. These averages are
regarded as the overall probability of the corresponding event
occurring in the scene. Finally, the mean of AE probabilities
in different scenes is subtracted from each other to measure
the difference of this event across scenes. Following this
procedure, a probability difference matrix between scenes is
obtained for each AE. Fig. 5 (a) and (b) illustrate these results
for the AE speech and vehicle. In Fig. 5 (a), the probability of
speech varies the most between two scenes: street pedestrian
(pedes.) and street traffic (traff.). Fig. 5 (b) shows that the
probability of vehicle differs the most between the shopping
mall (mall) and traff. scenes. Thus, the presence of specific
AE can clearly help to differentiate between scenes.

To explore whether all event classes taken together can
help differentiate between scenes, the absolute values of the
differences of all events are added to get the overall difference
between the 10 classes of scenes. The result is shown in Fig.
5 (c). Since absolute values are used, the matrix in Fig. 5
(c) is symmetric. Hence, the AE contributing to the largest
difference is shown in the upper-triangle part to indicate what
events are mainly responsible for these differences. Fig. 5
(c) illustrates that among scenes, mall and park have the

largest differences, with the main event causing such difference
being music. The pair of scenes park and bus, and park and
metro have the second-largest differences, and the main events
causing these differences are vehicles and music, respectively.
The difference between bus and tram is relatively small, and
the audio event causing the difference is mainly car.

One can notice the resemblance between this probability
difference matrix in Fig. 5 (c) and the confusion matrix in
Fig. 3 (f). As expected, the proposed cSEM-AST shows lower
confusion between AS classes where AE probabilities differ
most. Based on Fig. 5 (c), it is easy to identify the main events
contributing to these differences. That means, the proposed
c¢SEM-AST works well for joint scene-event analysis.

G. RQ7: How do ¢SEM-based methods compare to others?

Table XI shows the ASC results of different methods. The
CNN-based ensemble of two multi-input CNN models trained
with 11 types of acoustic features has achieved 1st place in the
challenge of DCASE2018 task 1 A (T1A) [46]. Also in T1A,
the system in 2nd place [47] uses a depth-wise separable CNN
trained with 3 multiscale features. The system in 3rd place [48]
is an ensemble of 6 big and deep models trained with 4 types
of acoustic features. In contrast, the proposed cSEM-AST and
cSEM-PANN only use one type of feature with one model
and do not involve data augmentations. A simple PANN-
based hierarchical baseline with an upper-lower relationship
between AE and AS prediction layers is proposed to estimate
AE and AS with an explicitly formed hierarchy. To explore
the performance of the linear combination of activation maps-
based cross-stitch [9], we show the CNN-based cross-stitch-
PANN in Table XI. Furthermore, several AE embeddings are
used as nodes to build the AS graph representations in the
event relational graph representation learning [49]. Note that
external event and scene datasets are allowed in T1A, so most
of the above methods have used models trained or pretrained
on these external datasets. Compared with the above methods,
the proposed cSEM, which aims to exploit the implicit two-
way scene-event relation to improve the discriminative power
between similar AS, achieves a better result. This demon-



strates that scene-event relation modelling helps improve scene
classification, even if the event information is derived from
unverified noisy pseudo labels.

TABLE XI
COMPARISON OF THE ASC RESULTS ON TUT2018 TEST SET.
System Model Cornerstone | Acc. (%)

Baseline [15] CNN 59.7
Simple hierarchical baseline VGG-like CNN 72.9
Cross-stitch-PANN [9] VGG-like CNN 74.5
Dataset-specific relation RGASC [8] VGG-like CNN 77.4
Event relational graph [49] CNN & Gated GCN 78.1
Wavelet-based DSS [20] CRNN with attention 78.3
T1A-3rd (6 models x4 features) [48] VGG & ResNet 78.4
Proposed cSEM-PANN VGG-like CNN 78.5
T1A-2nd (3 multiscale features) [47] Separable CNN 79.8
T1A-1st (2 modelsx 11 features) [46] Multi-inputs CNN 80.1
Proposed cSEM-AST Transformer Encoder 81.0

TAU2019 from DCASE2019 T1A [50] is an expanded
acoustic scene dataset based on TUT2018 [30]. Given the
good performance of cSEM-AST in previous RQs, Table XII
presents the results of cSEM-AST on TAU2019. DCASE2019
T1A allows the use of external datasets to train models. There-
fore, in Table XII, cSEM-AST is pretrained on AudioSet, and
the public and private scene datasets of DCASE2013 [51]. The
parameters used in pretraining are consistent with those used
in Section IV. SpecAugment [52] and Mixup [53] are used
for data augmentation. Since some labels of DCASE2013 and
TAU2019 datasets are different, we manually map busy street
and quiet street in DCASE2013 to street traffic in TAU2019,
open air market and supermarket to shopping mall, tube to
metro, and tube station to metro station. Labels that are the
same in these two datasets are retained. Given the advantages
of the multi-channel methods [54][55] in DCASE2019 TIA,
c¢SEM-AST also uses log mel features on the left channel, the
right channel, and the difference between the two channels.
Finally, the cSEM-AST achieves competitive results compared
to other multi-model fusion or ensemble methods in Table XII.

TABLE XII
COMPARISON OF THE ASC RESULTS ON TAU2019 TEST SET.
System Model Cornerstone |Acc. (%)
Baseline [15] CNN 62.5
Attentive fusion CNN (3 models) [56] VGG 77.0
Clustered DNN (9 modelsx 3 features) [57]| VGG-like CNN 81.6
DCGAN (3 models, 3 features) [58] VGG 88.0
Multi-resolution DSS (2 channels) [55] CNN-GRU 88.1
CNN vote (4 modelsx3 channels) [54] ResNet 88.4
Proposed cSEM-AST (3 channels) Transformer Encoder| 88.9

In addition, Table XIII compares cSEM with other scene-
event joint analysis methods. Since AS and AE in the syn-
thesized dataset are not as complex as those in real life, the
models in Table XIII usually offer better results on JSSED.
Among them, the joint scene and event recognition [5] by
the same embedding space gives the lowest accuracy. This
is probably because real-life coarse-grained scenes and fine-
grained events have their own characteristics and attributes.
The performance of jointly analyses AS and AE based on
one-way scene-to-event conditional loss [7] is better than that
of [6], due to the use of the scene-conditioned loss. Overall,

the proposed cSEM-based model provides the best scores out
of the discussed methods for joint analysis of AS and AE.

TABLE XIII
COMPARISON OF ASC RESULTS FOR SCENE-EVENT ANALYSIS METHODS.
Dateset Scene-event joint analysis system Acc. (%)
Joint scene and event recognition [5] 524
TUT2018 Event and scene joint analysis using MTL [6] 61.7
Conditional scene and event recognition [7] 66.4
Proposed cSEM-AST 81.0
Joint scene and event recognition [5] 92.0
JSSED Event and scene joint analysis using MTL [6] 93.7
Conditional scene and event recognition [7] 93.9
Proposed cSEM-AST 97.2

VI. CONCLUSION

This paper has presented a new method for modelling the
intrinsic relations between audio scenes and events using auto-
matically learned coupling matrices, and using such relations
to improve ASC. The proposed cSEM framework facilitates
the alignment of the information from coarse-grained AS
and fine-grained AE, and helps to reduce the confusion be-
tween similar AS, thus further improving ASC performance.
Experiments show that: 1) sharing some layers in cSEM-
based models will improve their performance; 2) The ¢cSEM
improves the accuracy of Transformer-based, CNN-based,
and CNN-Transformer-based models on ASC. Compared with
MoE and MIhE frameworks, the ¢SEM framework further
reduces the confusion between similar scenes; 3) The cSEM
improves ASC performance by associating the information
of AS and AE, even if the information of AE is derived
from unverified pseudo-labels. Specifically, cSEM improves
the accuracy of cSEM-AST and cSEM-PANN on ASC by
3.97% and 4.15%, respectively. 4) In cSEM, the regression loss
is more effective than the classification loss for the cooperative
modelling of scene-event relations; 5) The cSEM can help
align the knowledge of AS and AE through the coupling
matrix, and reduce redundant information between AS and
AE embeddings; 6) The cSEM-based model works well in
capturing the differences between scenes from the perspective
of events in real-life scene-event analysis; 7) Compared with
other multi-feature or multi-model ensemble methods, the
c¢SEM-based model achieves competitive results on ASC. The
Acc. of ASC on TUT2018, TAU2019 and JSSED datasets are
81.0%, 88.9% and 97.2%, respectively. The proposed cSEM
contains four loss functions, and future work will explore how
to automatically adjust the weights of loss functions to adapt
to ¢cSEM with different structures.
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